3D Bioprinting Applications in Tissue Engineering and Regenerative Medicine
Timeslot: Saturday, April 6, 2019 - 10:30am to 12:30pm
Track: Tissue Engineering and Regenerative Medicine
Room: Chelan 2
About
3D bioprinting is a fabrication technique used to mimic the anatomical complexity of native tissue, via a bottom-up approach, by depositing polymeric or cell-laden hydrogel based inks, in a layer-by-layer fashion. 3D bioprinting is a promising approachand to some of the most daunting obstacles facing the field of tissue engineering and regenerative medicine, including vascularization of tissue constructs, creation of complex architectures, and directing stem cell differentiation. The proposed session focuses on the recent advancements in 3D bioprinting technology in the development of complex, anatomical structures, motivating its use in a variety of biomedical applications such as regenerative medicine, tissue modeling, pharmacological assessment of therapeutics and modeling disease pathophysiology. Contributions regarding use of different bioprinting modality, along with recent development in advanced bioinks, are of interest to this session.
Abstracts
Abstracts will be available for download on April 3, 2019.
10:30:00 AM 509. Printing Therapeutics in 3D Using Nanoengineered Bioink, A. Gaharwar*, C. Peak, J. Chen, M. Adlouni, K.A. Singh; Texas A&M University, College Station, TX, USA
10:45:00 AM 510. Combinatorial Screening of 3D Printable Bioinks for Cartilage Repair, J. Galarraga*(1), S. Vega(2), M. Kwon(1), J. Burdick(1); (1)University of Pennsylvania, Philadelphia, PA, USA, (2)Rowan University, Glassboro, NJ, USA
11:00:00 AM 511. Development of Open Source 3D Bioprinters For Low-Cost and High-Fidelity Biofabrication, J. Tashman*, S. Sohn, T. Hinton, D. Shiwarski, A. Lee, A. Hudson, A. Feinberg; Carnegie Mellon University, Pittsburgh, PA, USA
11:15:00 AM 512. Engineering Cell Instructive DNA-Nanocomposites for Tissue Engineering, Bio-printing and Regenerative Medicine, A. Paul*; University of Kansas, Lawrence, KS, USA
11:30:00 AM 513. 3D Bioprinting of Biomimetic Constructs with Spatially Controlled Microenvironment for Rotator Cuff Augmentation, B. Duan*, P. Streubel, M. Kuss, S. Wu; University of Nebraska Medical Center, Omaha, NE, USA
11:45:00 AM 514. 3D Printing of Microstructured Collagen Scaffolds to Guide 3D Muscle Organization, A. Lee*, T. Hinton, A. Hudson, J. Bliley, A. Feinberg; Carnegie Mellon University, Pittsburgh, PA, USA
12:00:00 PM 515. Fast Stereolithographic Printing of Large-scale Vascularized Tissue, R. Zhao*, N. Anandakrishnan, H. Ye, C. Zhou; State University of New York at Buffalo, Buffalo, NY, USA
12:15:00 PM 516. Tunable Oxygen-Releasing, 3D-printed Scaffolds Improve in vivo Osteogenesis, A. Farris*, D. Lambrechts, N. Zhang, A. Rindone, E. Nyberg, A. O'Sullivan, S. Burris, K. Free, W. Grayson; Johns Hopkins University, Baltimore, MD, USA